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This chapter  describes a PROcess-guided deep 
learning and DAta-driven modeling (PRODA) 
approach to optimize parameterization of Earth 
system models (ESMs) using spatio-temporal 
datasets. PRODA involves both data assimilation 
to estimate parameter values and deep learning 
to predict spatial and temporal distributions of 
parameter values so as to optimize ESM prediction. 
An application to the Community Land Model ver-
sion 5 (CLM5) using soil organic carbon (SOC) 
distributions in the conterminous United States 
illustrates the potential and utility of the PRODA 
approach.

THE NEED FOR OPTIMIZING 
PARAMETERIZATION OF EARTH SYSTEM 
MODELS

Earth system models (ESMs) are used to simulate 
historical and potential future states of climate and 
ecosystems. However, simulations often deviate 

substantially from observations. For example, soil 
carbon dynamics simulated by ESMs vary widely 
among models and often fit poorly with observa-
tions. Modeled global soil carbon storage differs 
by up to six-fold among 11 models of the Coupled 
Model Intercomparison Project Phase 5 (CMIP5) 
ensemble (Todd-Brown et al. 2013). None of the 
models reproduces the spatial distribution of SOC 
stocks presented in the Harmonized World Soil 
Database (HWSD) (Luo et al. 2015).

Uncertainty in simulating SOC dynamics with 
ESMs could stem from poor parameterization, 
incorrect model structure, or biased external forc-
ing (Luo and Schuur 2020, chapter 33). While 
model structure represents ecological processes 
(e.g., decomposition of soil organic matter), 
parameters in ESMs characterize properties of the 
processes, such as baseline decomposition rate at 
reference temperature and moisture content, or 
sensitivity to these drivers. The choice of parame-
ter values can strongly influence model projections 
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of SOC dynamics. Parameter values in the current 
generation of ESMs, however, are mostly deter-
mined on an ad hoc basis. They may be derived from 
the results of field experiments, other models, or 
informed from scientific or grey literature (Luo 
et al. 2001), but rarely take into account the range 
of possible values encompassed by such sources.

Data assimilation techniques to estimate param-
eter values from observations were discussed 
and illustrated in earlier chapters (units 6, 7, 8). 
Parameter values constrained by data assimilation 
can improve SOC simulation in ESMs compared 
to the default parameter values. For instance, the 
global representation of SOC distribution in the 
Community Land Model version 3.5 (CLM3.5) 
was improved from explaining 27 to 41% of varia-
tion in the HWSD database by constraining model 
parameters with a Bayesian Markov Chain Monte 
Carlo (MCMC) data assimilation method (Hararuk 
et al. 2014). The large unexplained variation in 
observed SOC with ESMs is partly due to a text-
book concept that parameter values of a simulation 
model must be constant in contrast to variables 
that can vary over the time course of simulation 
(Forrester 1961). In reality, ecosystem properties, 
which parameters characterize in models, con-
stantly evolve via acclimation and adaptation. In 
addition, a model, no matter how complex it is, 
can never represent all the processes of a system at 
resolved scales (Luo and Schuur 2020). Interactions 
of processes at unresolved scales with those at 
resolved scales should be reflected in model param-
eters. Therefore, Luo and Schuur (2020) argue that 
parameter values in ESMs may have to vary over 
space and time (i.e., heterogeneous parameter val-
ues) to represent changing properties of evolving 
ecosystems and unresolved processes.

The advent of big ecological data provides a 
golden opportunity to reconcile model representa-
tions with observations and quantify the spatial and 
temporal features of key parameters in soil carbon 
cycle simulation. Meanwhile, new techniques such 
as deep learning have been proposed to improve 
performance of ESMs (Reichstein et al. 2019). By 
constructing computational models with multiple 
processing layers and allowing the models to learn 
representations of data from multiple levels of 
abstraction (LeCun et al. 2015), deep learning tech-
niques have promising applications in Earth sys-
tem science, such as pattern classification, anomaly 
detection, regression, and space- or time-dependent 
state prediction (Reichstein et al. 2019). Exploration 
is warranted on how to properly employ deep 

learning techniques in reducing uncertainties of 
simulated carbon dynamics in ESMs.

Here, we propose the PROcess-guided deep 
learning and DAta-driven modelling (PRODA) 
approach to estimate spatially and temporally 
heterogeneous parameter values for ESMs from 
extensive spatio-temporal datasets (‘big data’) at 
regional or global scales. The PRODA approach 
estimates parameter values at individual sites via 
data assimilation and builds a deep learning model 
to upscale the site-level estimates of parameters 
to predict spatially heterogeneous parameters at 
regional and global scales so that modeled and 
observed SOC are maximally matched.

In this chapter, we introduce the PRODA 
approach by using an extensive dataset of vertical 
soil profiles across the conterminous United States 
to optimize SOC representation by CLM5. We dis-
cuss the PRODA-optimized model performance in 
representing SOC stock and its vertical and spatial 
distributions, and compare it with results of the 
default model simulation and after the data assimi-
lation optimization. In particular, we highlight that 
the PRODA approach helps the process model to 
achieve the most precise SOC distribution ever rep-
resented in ESMs. An accurate SOC representation 
in ESMs is critical to fully understand soil carbon 
feedbacks to future climate change.

THE WORKFLOW OF PRODA

Three fundamental components together formu-
late the PRODA approach (Figure 37.1a), namely 
the process-based model, the site-level data assim-
ilation, and the deep learning model. Process-
based models with their predefined structure and 
default parameter values simulate SOC distribu-
tions using meteorological forcing data. Data 
assimilation is used to estimate parameter values 
of a process-based model with soil carbon data at 
sites where the observations were made. The deep 
learning model is used to predict optimized site-
level parameter values with their associated envi-
ronmental variables. Eventually, the process-based 
model will apply the optimized parameter values 
upscaled by the deep learning model to simulate 
SOC distributions at regional or global scales.

Process-based model: We use the matrix 
representation of the Community Land Model 
version 5 (CLM5) to facilitate data assimilation 
and model simulation in the PRODA approach 
(Figure 37.1b). CLM5 is the latest version of CLM 
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models (Lawrence et al. 2019). Its soil carbon 
module is similar to that in CLM4.5 (Koven et al. 
2013), except that it has an option to change the 
number of soil layers from a default of 20. In this 
example, we use ten soil layers with a vertical trans-
formation among carbon pools from the surface 
to a maximum depth of 3.8 m as in CLM4.5. The 
soil carbon component of CLM5 includes carbon 
transfer among four litter pools (coarse woody 
debris, metabolic litter, cellulose litter, and lignin 
litter) and three soil organic carbon pools (fast, 
slow, and passive SOC) in each of ten layers, total-
ing 70 pools. The thickness of soil layers increases 
exponentially from the surface layer (1.75 cm) to 
deep layers (151 cm), with a total depth of 3.8 m 
over the ten layers. Vertical carbon transfer between 
soil layers only occurs among the adjacent layers 
and represents both diffusive and advective carbon 
flux transportation caused by bioturbation and 
cryoturbation. The baseline advective rate of car-
bon flux is set to zero in CLM5 as a default, and 
this is assumed in our example as well.

We have discussed in units 1–5 that carbon bal-
ance equations in land carbon models can be uni-
fied to a matrix form. For CLM5, we use the matrix 
equation to describe carbon transfer among the 70 
pools with state variables X (t) as:
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where B is a vector (70×1) of partitioning coeffi-
cients from C input to each of the pools (unitless), 
and u(t) is C input rate (gC m−3 day−1). A repre-
sents the transfer coefficients among litter and soil 
pools (unitless), including the transfer coefficients 
from four litter pools to three soil carbon pools 
as well as the transfer coefficients of SOC among 
soil carbon pools in the same layer. ξ(t) represents 
effects of environmental variables on decomposi-
tion of litter and soil (unitless). It includes sca-
lars of temperature (ξT), soil water (ξW), oxygen 
(ξO), nitrogen (ξN), and depth (ξD). K indicates 

Figure 37.1.  Workflow of the PRODA approach. (a) PRODA optimally matches CLM5 as the process-based model (b) with 
vertical SOC profiles on the conterminous United States (c). We first assimilate data at each site into CLM5 to estimate its param-
eters through the Markov Chain Monte Carlo method (MCMC). We further assemble the estimated site-level parameter values 
(i.e., the mean value of the posterior distribution after MCMC) as targets to be predicted by a multilayer neural network with 
environmental covariates in a deep learning model. The predicted parameters by the deep learning model are applied to CLM5 
to optimize model representation of SOC distribution.



322 PROCESS-GUIDED DEEP LEARNING AND DATA-DRIVEN MODELING (PRODA)

the decomposition rate of SOC in different litter 
and soil carbon pools (day−1). V(t) represents SOC 
mixing among vertical soil layers through cryo-
turbation or bioturbation (day−1). The t in paren-
theses indicates that the corresponding element 
is time-dependent. At a steady-state of the carbon 

cycle (
d t

dt

X � �
� 0 ), the SOC content of each carbon  

pool at each layer can be calculated as:
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Soil carbon data and site-level data assimila-
tion: We use vertical SOC profiles in the contermi-
nous U.S. from the World Soil Information Service 
(WoSIS) dataset (www.isric.org) for the site-level 
data assimilation (Figure 37.1c). The depth of 
recorded SOC layers ranges from the surface to 
more than 3 metres. A total of 26,509 soil profiles 
with a total of 240,148 layers at different depths 
in the conterminous U.S. are available in this study.

In addition, we use the mean values of global 
net primary productivity (NPP) from 2000 to 
2014 as carbon input (DAAC 2018). After running 
the CLM4.5 model to a steady-state by the pre-
industrial climate forcing (version code of forcing 
database: I1850CRUCLM45BGC), ten-year records 
of soil temperature and soil water potential of the 
conterminous U.S. were obtained from the model 
outputs.

The site-level data assimilation constrains 
parameter values of CLM5 with one data set of a 
vertical SOC profile at each site with the Markov 
chain Monte Carlo (MCMC) method (as described 
in chapter 22). Three parallel chains are generated 
each containing a test run of 20,000 iterations 
and a formal run of 30,000 iterations. To effec-
tively capture the vertical distribution pattern of 
soil content along the depths, we put weights 
to observations at different depths in calculating 
the discrepancy between modeled and observed 
SOC content (i.e., cost function). These weights 
decrease exponentially with the depth (i.e., weighti 
= e−|depthi|, where i refers to the layer’s soil depth 
in observations) except for the top layer and the 
bottom layer, where a weight of ten is assigned to 
accelerate calibrating the upper and lower bounds 
of the SOC distribution curve. To monitor the effi-
ciency of the MCMC process, an acceptance rate 
threshold is set. For Markov chains whose accep-
tance rate is higher than 50% or lower than 15%, 

the corresponding data assimilation results are 
rejected. After the MCMC process, the first half of 
the accepted parameter values in the formal run 
are discarded as burn-in. The Gelman-Rubin sta-
tistics of each parameter are then calculated for 
each soil profile to ensure the convergence of 
these three independent MCMC results. We ran-
domly select one chain after eliminating the burn-
in period to generate the posterior distributions 
of parameters. The mean value of the parameter’s 
posterior distribution is calculated and chosen to 
serve as the training target in the deep learning 
model.

We evaluate the effectiveness of the site-level 
data assimilation by the coefficient of efficiency:
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where obsi and modi are the observed and modeled 
SOC content at ith soil layer of one soil profile; obs  
is the mean value of observed SOC content of the 
soil profile. In this study, we take profiles having 
negative E values as invalid and discard the results 
from the corresponding deep learning model. 
Moreover, at those sites where an observation is 
available at only one soil depth, we do not apply 
the data assimilation to the data point. After those 
data sets are excluded, 25,444 out of 26,905 soil 
profiles, or 94.6% of the entire dataset, are used in 
the PRODA approach.

Deep learning model: We design a deep learn-
ing model with multiple processing layers to predict 
optimized parameter values with environmental 
covariates. A total of 60 environmental variables 
that describe the climatic, edaphic and vegetation 
features at the observational sites is used. We used 
80% of the total dataset to train and validate the 
neural network. After model training, we use the 
remaining 20% of the dataset to quantify the pre-
diction accuracy of the deep learning model. The 
predicted parameter values are first compared with 
those retrieved in site-level data assimilation and 
then applied to the matrix CLM5 model to simu-
late soil organic carbon stock at each observational 
site. Meanwhile, we used the trained deep learning 
model to generate parameter maps across the United 
States based on gridded environmental covariates. 
The parameter maps are then applied to the matrix 
CLM5 to simulate the SOC distributions across the 
United States at a resolution of 0.5 degrees.

http://www.isric.org
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SOC distributions optimized by data assimi-
lation: To analyse the significance of the spatially-
explicit parameter estimation of PRODA compared 
with a traditional approach, we perform a batch 
data assimilation using all the observational data-
set as one batch in the MCMC method to estimate 
parameter values of CLM5 with data assimilation. 
The estimated parameter values from this method 
are spatially homogeneous, in contrast with the 
site-level data assimilation, which is a middle step 
of the PRODA approach to estimate spatially hetero-
geneous parameter values. SOC distributions simu-
lated by CLM5, trained by the batch data assimilation 
versus the results by PRODA, can then be compared.

The batch data assimilation runs three parallel 
MCMC chains, each containing 50,000 iterations 
as test run and 200,000 iterations as formal run. 
Weights at different depth in calculating the cost 
function and acceptance control are the same as 
those in the site-level data assimilation. After the 
MCMC method, we first discard the first half of 
the accepted parameter values of the formal run 
as burn-in. The Gelman-Rubin statistics for each 
parameter are then calculated to ensure the con-
vergence of these three independent MCMC 
results. We randomly select one Markov chain 
after eliminating the burn-in period to generate 
the posterior distribution for each parameter. We 
then randomly sample parameter values from the 
posterior distributions 1,000 times and apply the 
sampled parameter values to the CLM5 matrix 
model. We estimate SOC content distributions at 
different sites by calculating the average of the 
results. The same sampled parameter values are 
further assigned in CLM5 to estimate SOC content 
distributions at each grid cell on the map of the 
conterminous US at a resolution of 0.5 degrees.

Reference SOC data products: We use two 
sets of SOC data, WISE30sec and SoilGrids250m 
(Hengl et al. 2017), as references to compare with 
spatial and vertical distributions of SOC obtained 
from our study over the United States. WISE30sec 
is an updated version of the dataset HWSD, gen-
erated by using traditional mapping methods at a 
resolution of 30 × 30 arc sec. SoilGrids250m is a 
global gridded soil information dataset generated 
by using machine learning techniques at 250 m 
resolution. We took data of SOC content over three 
depth intervals from these two datasets, 0–30 cm, 
0–100 cm and 0–200 cm. All the original data 
with high resolution were resampled to a resolu-
tion of 0.5 × 0.5 degrees.

MODEL REPRESENTATION OF SOC CONTENT 
ACROSS OBSERVATION SITES

The original CLM5 model with default param-
eterization presents significant geographical biases 
on the estimation of SOC content in comparison 
with observations. Modeled SOC in the grid cell in 
which the site of observation was located is com-
pared with observations (Figure 37.2a). SOC stor-
age is systematically overestimated by the original 
model near the east and west coasts of the U.S. but 
underestimated in the Midwest. The consistency 
between observed and modeled SOC content is 
low, with R2 = 0.32 and RMSE = 15.9 kgC m−3 
(Figure 37.2b and Table 37.1).

The batch data assimilation method generates 
the distribution of SOC from continentally homo-
geneous posterior distributions of parameters esti-
mated from all the observation data at once in data 
assimilation. With the batch data assimilation, the 
mismatch between observed and modeled SOC 
content in the CLM5 model is moderately reduced 
in the north and east parts of the U.S. (Figure 
37.2c). However, geographical biases in model 
representation of SOC are not eliminated. CLM5 
optimized by the batch data assimilation still 
underestimates SOC storage in the Intermontane 
Plateaus and southern Great Plains. Meanwhile, 
overestimation still exists in the Great Lakes areas 
and the Northeast. Overall, CLM5 after optimiza-
tion by the batch data assimilation explains 43% 
variation in the observed SOC content with RMSE 
= 11.4 kg C m−3 (Figure 37.2d and Table 37.1).

Through the deep learning model, the PRODA 
approach predicts the optimized parameter val-
ues at each site across the conterminous U.S. by 
its environmental variables. PRODA-optimized 
CLM5 achieves a better representation of SOC 
distribution compared to the batch data assimi-
lation. Little systematic geographical biases in 
estimating SOC storage are observed across the 
study domain (Figure 37.2e). The modeled and 
observed SOC content are highly correlated with 
R2 = 0.62 and RMSE = 9.0 kg C m−3 (Figure 37.2f 
and Table 37.1).

SPATIAL DISTRIBUTION OF SOC ACROSS THE 
CONTERMINOUS U.S.

We take point observations (Figure 37.3a–c) and 
estimations from WISE30sec (Figure 37.3d–f) and 
SoilGrids250m (Figure 37.3g–i) as references 
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to compare the SOC estimations by CLM5 with 
default parameterization, optimized parameter-
ization after the batch data assimilation, and the 
PRODA approach. At the continental scale, the ref-
erence data suggest large volumes of SOC in the 
northeast and northwest of the conterminous U.S. 
The magnitude of SOC content in these regions 
can be as high as 30 kg C m−2 for the 0–200 cm 
depth interval. Meanwhile, a decreasing gradient 

of SOC from the northeast to the southwest is 
observed. High SOC exists in areas across the Great 
Plains, extending from Texas to the Great Lakes.

The default CLM5 model (Figure 37.3j–l) cap-
tures the continental SOC content gradient from 
the northeast to the southwest but fails to repro-
duce sub-regional features of SOC distribution in 
the Great Plains. Meanwhile, SOC content in the 
east and northwest estimated by the original CLM5 
is significantly higher than that indicated by the 
reference data. After optimization by the batch 
data assimilation, CLM5 reproduces the continen-
tal SOC gradient from the northeast to the south-
west with reasonable values (Figure 37.3m–o). 
However, high SOC content in the Great Plains is 
still not well represented. The PRODA approach 
performs best overall, helping achieve the most 
realistic spatial SOC distribution (Figure 37.3p–r) 
in comparison with observations (Figure 37.3a–c) 
and data products (Figure 37.3d–i). In addition 
to capturing the continental SOC distribution pat-
tern, the PRODA-optimized CLM5 presents more 
accurate subregional SOC distribution patterns in 
the Great Plains.

TABLE 37.1
Performance of CLM5 in representing SOC distribution 

under different approaches

Method

Model Performance

R2 RMSE (kg C/m3)

Default CLM5 0.32 15.86

Batch Data Assimilation 0.43 11.41

PRODA Approach 0.62 8.95

Note: R2 is the coefficient of determination from linear regression 
between the observed and modeled SOC content. RMSE is the root 
mean square error.

Figure 37.2.  The agreement between observed and modeled SOC content with different approaches. SOC estimates modeled 
by CLM5 were extrapolated to the depths of observations to evaluate model performance. The upper panel indicates the devia-
tion of the modeled SOC storage from the observation of the whole profile for each site. The lower panel shows the results of 
linear regression between observed and modeled vertical SOC content at different depths in different methods. In calculating 
the deviation of modeled SOC storage from observations, for better presentation, the positive (overestimation) and negative 
(underestimation) discrepancy between the observed and modeled SOC content were scaled based on the 95% quantile of the 
positive discrepancy and 5% quantile of the negative discrepancy, respectively. Meanwhile, only the results of the testing set 
were presented in PRODA approach.
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VERTICAL DISTRIBUTION OF SOC ACROSS THE 
CONTERMINOUS U.S.

We take results from WISE30sec and SoilGrids250m 
as references in estimated SOC stocks at different 
depth intervals (Figure 37.4). For the first 2-meter 
soil, WISE30sec suggests 243 PgC and SoilGrids250m 
estimates 269 PgC stored as SOC. Along the soil 
depth, WISE30sec suggests 98 PgC at 0–30 cm depth, 
81 PgC at 30–100 cm, and 64 PgC at 100–200 cm. 
SoilGrids250m estimates 102, 86, and 81 PgC at the 
same three depth intervals, respectively.

The original CLM5 model with default param-
eterization substantially overestimates SOC stocks 

in comparison with the references at all three soil 
depths (Figure 37.4). Compared with the refer-
ences, the overestimation becomes stronger with 
increasing soil depth. Both the batch data assimila-
tion and the PRODA approach help CLM5 estimate 
more reasonable SOC storage compared with the 
original CLM5 model. We estimate 165 PgC using 
the batch data assimilation and 246 PgC for the 
first 2-meter soils using the PRODA approach.

For different vegetation types, the PRODA 
approach presents more accurate estimations of 
the vertical SOC distribution than the batch data 
assimilation (Figure 37.5). CLM5 underestimates 
the SOC content in the evergreen forest, shrubland, 

Figure 37.3.  Modeled spatial SOC distributions in three depth intervals across the conterminous U.S. by different approaches 
and datasets.
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Figure 37.4.  SOC storage across the conterminous U.S. at different depths estimated by different approaches and data sources.

Figure 37.5.  SOC storage for different vegetation types across the conterminous U.S. at different depths estimated by different 
approaches and data sources. The number in parentheses after vegetation type is the number of sites with that vegetation in the 
dataset used in this study. The error bars indicate ±0.5 standard deviation.
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savanna, grassland and wetland regions after the 
optimization by the batch data assimilation. The 
PRODA-optimized CLM5, in contrast, presents the 
least biased estimations in comparison with obser-
vations at all depth intervals in the aforementioned 
regions.

TOWARD MORE REALISTIC REPRESENTATIONS 
OF SOC DISTRIBUTION

This chapter has systematically explored the signif-
icance of spatially heterogeneous parameterization 
for the adequate prediction of SOC distribution in 
Earth system models, with CLM5 as a representative 
case. The results support the PROcess-guided deep 
learning and DAta-driven modelling (PRODA) as 
a promising approach to optimize model repre-
sentation of SOC, utilising the explanatory power 
implicit in immense observational data. PRODA 
considers biogeochemical processes in the soil 
carbon cycle while preserving strong big data 
analysis ability to integrate soil data into complex 
models. We compared the PRODA-optimised SOC 
representation by CLM5 with the default model 
simulation and the results optimized by batch 
data assimilation and conclude that PRODA helped 
CLM5 achieve the most accurate SOC representa-
tion. Indeed, no better fit to reference data on SOC 
has ever been simulated by process-based models.

In the past decades, different approaches have 
been developed for representation of SOC distri-
bution (Figure 37.6). Soil scientists collect soil 
data and develop mechanistic understanding of 
soil carbon cycling from field observations or 
experiments. The simulation modeling approach 
conceptualizes those mechanisms into mathemati-
cal equations and strives to simulate SOC accord-
ing to process understanding. Notwithstanding 
the detailed description of carbon cycle processes, 
the models struggle to realistically simulate SOC 
distribution. Such unrealistic model simulations 
mainly arise from inadequate parameteriza-
tion. Parameters that represent critical processes 
of the soil carbon cycle in the real world are not 
sufficiently constained with widely distributed 
observational data. Therefore, it is difficult for 
process-based models to accurately represent SOC 
distributions. In our example, CLM5 with default 
parameter values substantially overestimates the 
total SOC storage of the conterminous U.S. and 
presents strong geographical biases in the repre-
sentation of SOC distribution.

Batch data assimilation provides a way of incor-
porating observational data information into the 
process model to improve SOC simulation. Such 
data-driven optimization harmonizes site-level 
data information as a whole to adjust the param-
eter values for better representation of the SOC. We 

Figure 37.6.  Schema of different approaches to represent SOC distributions. The PRODA approach benefits from both process 
understanding (as featured by simulation modelling) with the real-world information brought out by big data analysis from 
machine learning. The latter is primarily to obtain accurate representations of the spatial distribution of SOC and its underlying 
mechanisms.
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have shown in the example study that the opti-
mized CLM5 with data assimilation successfully 
corrects the considerable overestimation of total 
carbon storage across our study domain.

In terms of representing the spatial variability 
of SOC, however, batch data assimilation fails to 
capture the spatial variability of observed SOC. 
The spatially invariant parameter values optimized 
from the batch data assimilation approach are 
insufficient in describing the heterogeneity of SOC 
distribution at large scales. In our example study, 
geographical bias still exists after the optimization 
by the batch data assimilation.

The PRODA approach solves the issue of geo-
graphical bias by using a deep learning model 
to first fully estimate parameters at the site level 
using the data assimilation and then upscales the 
site-level estimates of parameters to the whole U.S. 
continent. The spatially varying parameter values 
retrieved from the PRODA approach contribute to a 
more accurate model representation of SOC across 
the range of ecosystem types (vegetation class, soil 
type, geology etc) across the continent. PRODA-
optimized CLM5 simulates the most realistic SOC 
distribution ever simulated by process models. The 
high agreement between observed and modeled 
SOC content (R2 = 0.623 across the conterminous 
U.S.) achieved by the PRODA approach is com-
parable with that for harmonization mapping in 
SoilGrids250m by machine learning (R2 = 0.635 
across the globe) (Hengl et al. 2017), and greater 
than the agreement between separate gridded 
empirical data products (Wu et al. 2019).

More importantly, the PRODA approach paves 
the way for more mechanistic understanding of 
the soil carbon cycle from big data analysis with 

machine learning. Machine learning alone is good 
at accurately describing SOC distribution, yet pre-
vious applications used in digital soil mapping 
focus only on the complex statistical relationship 
between environmental variables and SOC. The 
PRODA approach not only precisely maps SOC dis-
tributions but also provides the spatial patterns of 
different mechanisms (as represented by different 
parameters) of the soil carbon cycle. In the future, 
disentangling how these mechanisms vary with 
environments and quantifying their importance 
to SOC storage will be essential for understanding 
terrestrial carbon dynamics and their feedbacks to 
climate change.
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QUIZZES

	 1.	 What is the main difference, in terms of parame-
terization scheme, between the batch data assim-
ilation and the PRODA approach as described in 
this chapter?

	 2.	 Describe the input and output of the deep learn-
ing model in the PRODA approach?

	 3.	 What is the advantage of the PRODA approach in 
comparison to conventional machine learning 
methods in representing SOC distributions?


